Advanced Biometrics with Deep Learning

Advanced_Biometrics_with_Deep_Learning_cover.jpg

Dublin Core

Title

Advanced Biometrics with Deep Learning

Subject

Technology
Engineering

Description

Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others.

Creator

Jin, Andrew (editor)
Leng, Lu (editor)

Source

https://directory.doabooks.org/handle/20.500.12854/68869

Publisher

MDPI - Multidisciplinary Digital Publishing Institute

Date

2020

Rights

https://creativecommons.org/licenses/by/4.0/

Format

Pdf

Language

English

Type

Book

Identifier

10.3390/books978-3-03936-699-6

Document Viewer